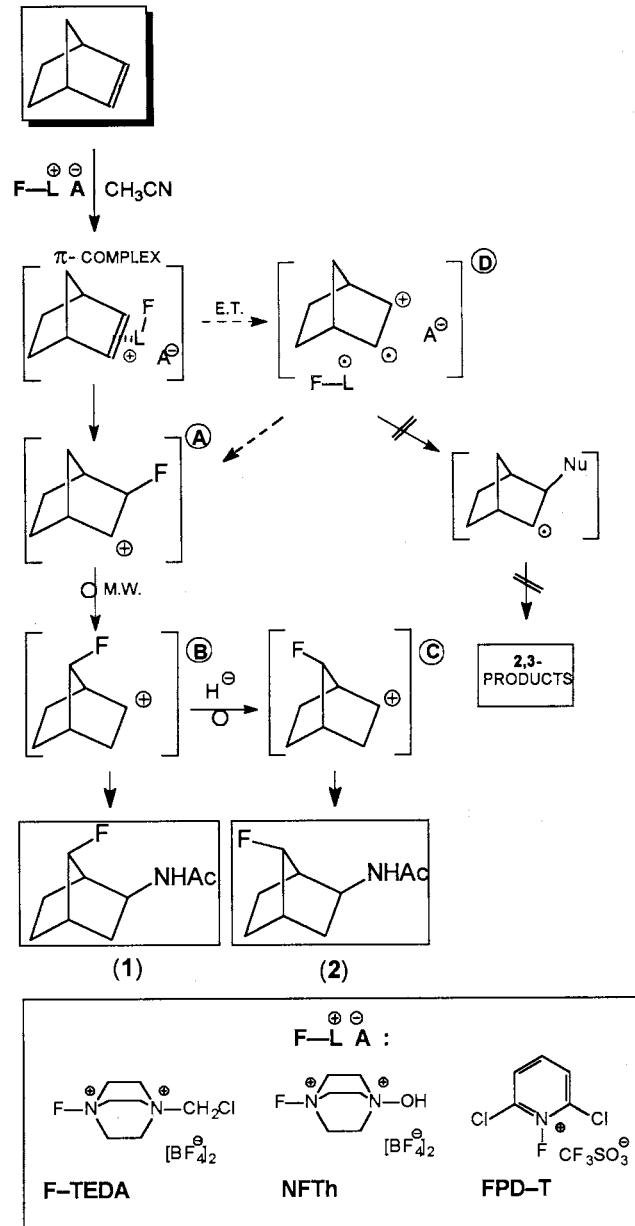


Evidence for Ionic Intermediates in Fluorination of Alkenes with N-F Type of Reagents

Marko Zupan,* Primož Škulj, and Stojan Stavber

*Laboratory of Organic and Bioorganic Chemistry, Department of Chemistry and "J. Stefan" Institute, University of Ljubljana
Aškerčeva 5, 1000 Ljubljana, Slovenia*

(Received March 23, 1998; CL-980223)


2-Exo-acetamido-7-syn-fluoro norbornane and 2-exo-acetamido-7-anti-fluoro norbornane were formed in the room temperature reaction of bicyclo[2.2.1]heptene in acetonitrile with N-F type reagents [1-chloromethyl-4-fluoro-1,4-diazoabiacyclo [2.2.2] octane bis(tetrafluoroborate) (F-TEDA), 1-fluoro-4-hydroxy-1,4-diazoabiacyclo[2.2.2]octane bis(tetrafluoroborate) (NFT_H) and 2,6-dichloro-1-fluoro pyridinium triphlate (FPD-T)]. Such Meerwein-Wagner rearrangement and hydride shift indicated the formation of fluoro carbonium ions.

The N-F class of reagents are easy to handle and commercially available, while their reactivity depends on their type,¹ which might be the R_1R_2NF type,² N-fluoro pyridinium and related salts³ or $F-N^+R_1R_2R_3^- A^-$ type.⁴ Fluoro functionalizations of alkenes with the N-F type of reagents were explained with ion radical formation,^{2,3} while the low Hammett ρ value suggested the nonpolar nature of the rate-determining step.⁵ On the other hand, laser flash photolysis studies demonstrated that ion radicals generated from alkenes are trapped by a nucleophile and the formation of radical intermediates was proven.⁶ Bicyclo[2.2.1]heptene is an excellent model alkene enabling discrimination between radical and ionic intermediates.⁷ The former intermediates are mainly transformed to 2,3-disubstituted products, while the latter intermediates usually undergo Meerwein-Wagner rearrangement and/or hydride shift and the formation of 2,5- and/or 2,7-disubstituted products are observed.

We now report the use of norbornene as a mechanistic tool to gain further insight into nature of the intermediates involved in the reactions of alkenes with N-F reagents. In a typical experiment we dissolved 1 mmol of norbornene in 5 ml of acetonitrile, 1.2 mmol of N-F reagent [F-TEDA, NFT_h, FPD-T or N-fluoro bis(benzenesulphonamide) NFSi] was added and stirred at room temperature for 4 hours. NFSi did not react even at prolonged reaction times, whilst F-TEDA, NFT_h and F-PDT gave crude reaction mixtures containing two products which were isolated by g.l.p.c. and characterized on the basis of their spectroscopic data.⁸ The ratios between 2-exo-acetamido-7-syn-fluoro norbornane (**1**) and 2-exo-acetamido-7-anti-fluoro norbornane (**2**) are not much influenced by the structure of the N-F reagent (**1**: **2**; F-TEDA = 50:50, NFT_h = 48:52, FPD-T = 55:45).

On the basis of the experimental results we suggest the mechanism presented in the Scheme. In the first step a π -complex is probably formed which could be transformed to the β -fluoro carbonium ion (**A**), Meerwein-Wagner rearrangement gives ion (**B**), and reaction with acetonitrile results in the formation of (1). The rearranged fluoro carbonium ion (**B**) undergoes hydride shift forming ion (**C**) while reaction with

Scheme.

acetonitrile gives (**2**). The absence of 2,3-disubstituted products diminishes the possibility of an electron transfer process; however conversion of the ion radical (**D**) to fluoro carbonium ion (**A**) cannot be completely excluded, because the situation in the proposed intimated pair (**D**) is not clear and not comparable

with laser-flash experiments, where ion radicals were transformed to radical intermediates.⁶ The present results confirmed that the main intermediates in mild fluorinations of alkenes with N-F type of reagents have an ionic nature.

We are indebted to Dr. G. A. Shia, Allied Signal Chemicals, Buffalo, New York for free samples of NFT_h and NFSi, and to Dr. K. Nukui, New Field Research Lab., Chichibu Onoda Cement Corp., Japan for FPD-T.

References

- 1 G. S. Lal, G. P. Pez, and R. G. Syvret, *Chem. Rev.*, **96**, 1737 (1996).
- 2 D. D. DesMarteau, Z. Q. Xu, and M. Witz, *J. Org. Chem.*, **57**, 629 (1992).
- 3 T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada, and K. Tomita, *J. Am. Chem. Soc.*, **112**, 8563 (1990).
- 4 R. E. Banks, S. N. Mohialdin-Khaffaf, G. S. Lal, I.; Sharif, and R. G. Syvret, *J. Chem. Soc., Chem. Commun.*, **1992**, 595; R. E. Banks, M. K. Besheesh, S. N. Mohialdin-Khaffaf, and I. Sharif, *J. Chem. Soc.; Perkin Trans. 1* **1996**, 2069; G. S. Lal, *J. Org. Chem.*, **58**, 2791 (1993); S. Stavber, T. Sotler, and M. Zupan, *Tetrahedron Lett.*, **35**, 1105 (1994); S. Stavber, M. Zupan, A. J. Poss, and G. A. Shia, *Tetrahedron Lett.*, **36**, 6769 (1995).
- 5 S. Stavber, T. Sotler-Pečan, and M. Zupan, *M. Bull. Chem. Soc. Jpn.*, **69**, 169 (1996).
- 6 L. J. Johnston and N. P. Schepp, *J. Am. Chem. Soc.*, **115**, 6564 (1993); M. S. Workentin, N. P. Schepp, L. J. Johnston, and D. D. M. Wayner, *J. Am. Chem. Soc.*, **116**, 1141 (1994).
- 7 T. G. Traylor, *Acc. Chem. Res.*, **2**, 152 (1969); F. Freeman, *Chem. Rev.*, **75**, 439 (1975); R. S. Brown, *Acc. Chem. Res.*, **30**, 131 (1997).
- 8 Products were isolated by preparative g.l.c: 35% of 2-exo-acetamido-7-syn-fluoro norbornane (**1**), mp: 129°-131°C; δ F=-207 ppm (ddd, J=58, 6, 6 Hz) δ H₇=4,90 ppm (d) δ H₂=3,73 ppm (m); MS: m/z=171, 109, 92, 86, 67; and 37% of 2-exo-acetamido-7-anti-fluoro norbornane (**2**), mp: 87°-88°C, δ F=-201 ppm (dm, J=58 Hz) δ H₇=4,90 ppm (d, 2 J_{FH}=58Hz) δ H₂=4,15 ppm (m); MS: m/z=171, 109, 92, 86, 67.